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ABSTRACT

7 ~Cons-ider fractional factorial designs of resnlution !V, ., where we wish

to est--•ate only hne main effects but the 2- factor interactions are not

negligible. Such designs with desirable size are greatly iteeded both in

agriculture and industry, and both in uniresponse and rultiresponse experiments.

The usual completely othogonal designs involve N vuns, where N is a ;..ultippe of

8. In many situations, we have a set of exactly N homogeneous experiment umits,

where N is not divisible by S. For example, we may have N 22 new jet bombers

'f certain kind being developed for defense purposes. Herm the sampling =nits,

nanely t -jlets, are expensive, and furthermore cannot easily be increased in

number ju,-t for the sake of our experiment. If we want to test these jets under

a factorial design of resolution IV using the present available destgns, then we

can use onli 1C of them, since 16 is the multiple of 8 nearest to but not ireater

than 22. This v'out& result in a loss of 6/22 of the available information.

Thus the purp.. e of this paper is to obtain good nonortnogonal or irregular

designs of resolution 25 for the 2 m series. Besides being of desirable size, a

nonorthogonal design should be good with respect to its covariance matrix V of

the estimates. In this paper, such designs (with even N) are obtained. These

designs are optimal with resaec"* to t1e trace, determinant and the largest root

criteria which are shown to b,. equi'olent. in other words, among all possible

designs a given value of N, our designs minimize the trace, the determinant and

the largest root of V.

I:
Ii i
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Summar-. In this paper, we develop a general theory of balanced 2m fractional

factorial designs which permit estimation of main effects orthogonally to 2-

factor interactions and the general mean, whose size N is desirably small, and

which are optimal with respect to various standard criteria involving the variance-

covariance matrix of the estimates. For various practical values of m and N,

a method is riven by which such optimal designE. can be easily obtained from known

balanced incomplete block designs, (BIBD's).

1. Introduction

Fractional factorial designs, discovered by Finney (1945), are finding

increasing use in biological, industrial, and defense research. A large number

of authors have contributed to the development of the various facets of the theory.

For the reader interested in an introduction to the same, a list of such authors

is incldded in tie references at the end. We stress that this list is by no means

exhaustive; it is only illustrative.

In many cases, the main effects are of immediate or primary interest, but

the two-factor interactions cannot be assumed negligible. "Good" designs for

various symmetrical and asym:netrical factorials need therefore to be developed.

The properties of "goodness" that are most important, and most often even necessary

include the following: (a) The design should be of small size, i.e., the number

of observations should be the desirable minimum. (b) The design should have
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balance or at legist partial balance. This lends facility not only to the analysis

of the desigr,, but also to the interpretation and understar,*ng of the results.

(c) 1'bcŽ design should further satisfy some reasonable optimality condition on

the variance covariance-matrix of the estimates.

Let L denota tne (best linear unbiased) estimate of the ?Lrameter vector L.

The usual variance criteria under (c) above include (i) trace, (ii) determinant,

and (iii) largest root criterion. A design T is said to satisfy these criteria if,

respectivety, the Lrace, determinant, or largest root of VT is a minimum for this

design within the class of all possible designs of fixed size. Here VT = Cov ,

when L is estimated using T.

In this paper we shall discuss designs satisfying all the criteria mentioned

above.

2. Some Preliminaries

We shall use a notation similar to the one in Bose and Srivastava (1964)

and for the facility of the reader, repeat (without detailed proof) some basic

theory of fractional designs developed therein. Treatment combinations (and also

their "true effects") are denoted by {a1 a2 ... , a 3n or equivalently

(9 J2' "' m) where j's e {0,1}. The k factor interactions between factors
A . , "'' A. ,ay is denoted by (A.A. • A.k). As usual, the interactions

1 .2 k12k
are defined, in symbolic notation by

S, 1 0), 10 ( 0 1 0
(2.1) A2A Ak Cal-a)1a 2 -a 2 ) "" k ak+l+ak+l)"'( m ma)

and similarly for any set of k factors, where 1 < k < m. The symbol *, which

denotes the grand total of all 2 m assemblies, is also given by (2.1), if the

r.h.s. is assumed to have plus sign in each bracket.
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Let iT denote the column vector of A's in the standard order:

(2.2) _ 1[; A!,..., Am; A2, AIA3 ,..., A A ; A A A ,

If T ( 2 m x 1) denotes the vector of assemblies, then (2..L) implies nt Dr,

where D is a ( 2 m x 2 m) matrix, and the sum of products of the corresponding

elements in any two rows of D is zero. It is easily spen that 2 D is an

orthogonal matrix and

(2.3) T = 2-mDt•

Let n be partitioned as

(2.4) _it = (L'-I. )

where L (say, (v x 1), where v 1 + m(m+l)/2) is the column vector containing

all effects up to and including all the two factor interactions, and Io(with

(2m - v) elements) is the vector containing all 3-ýfactor and higher order interactions.

In this paper, I is assumed zero. Then (2.4) implies

(2.5) T = 2-mDL
0Z-

where DO is the matrix obtained by cutting out the (2- v) columns of D' which

correspond to I in (2.3).Z-o
Let T be a fractional design, i.e. a set of assemblies in which any given

treatment may not occur or may occur once or more times. Let the expected values

of the assemblies in T, written in the form of a vector, be denoted by z* whcre,

it is assumed there are no block effects. Let Et be the matrix

obtained from D; by cutting out the last (2m - v) columns corresponding to I
0

t and also by omitting (or repeating) the rows corresponding to treatment combinations

omitced (or repeated) from Tto get z*. Note that the rows of El are arranged in

such a way as co correspond to the elements of z*. Let z be the vector of

observations corresponding to z*. Assuming no block effects the model is

a _
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(2.6) £xp (Z) = z' 2mE'L

var (z) = G2

where 2 is unknown, and I is the (n x n) identity matrix.
n

Then the normal equations are

(2.7) EE'q = Ez

S- where r stands for the estimate of = 2-

Let T be a fractional design containing N assemblies. Then the symbol

X .. or X(a.3 a. 2 a )
12-r 1 12 r

denotes the number of assemblies w such that the symbol

a. a . a. occurs as a part of w. The symbols a] are to be regarded asi i 12 i i
1 2 r

indeterminates and, as such, expressions like the above are operated upon, over

the field of real numbers, like ordinary products of indeterminates.

Consider the set P of all polynomials with real coefficients in the symbols

a, (i < i < m, j = 0, 1) and of degree 1 in each symbol, such that no term
1 -

0 1
involves both a. and a., for any i. In the sequel, we shall be ;oncerned with

only such polynomials; more information on these can be had from Srivastava (1967).

Then we define

(2.8) C(SP 1 + 6p 2 ) = SX(Pl) + 6X(P2),

1 0 01 10 01for all p,, P2 P. Thus for example -(2a~a 0 13 12 13- p2  -~a 3ala3) :2X1 - 3A!3

If T and T are two fractional designs, then T D T shall denote the design
1 2 1 2

in which any treatment combination w occurs (r + r ) times, provided w occurs

.!espectively rI and r 2 times in T1 and T2  Then if • P, we have

(2.9) ),(P,TT 2 ) V X(p,T) + X(P,T

where A(p,T) denotes the value of X(p) obtained for the set of assemblies T.
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Given any fraction T the matrix EE' can be directly expressed using the

X-operator. Every row, and hence every column, of EE' corresponds to exactly

one element of L. Indeed, the elc.ment in the (i,j) position of EL' corr-esponds

.th .•
to the elements in the i and i position of L. An element of L can be expressed

as A. A. where 31, = 0 cr 1. Then corresponding to {f} (the general nean),

•i2

1 2

{A.} (the main effects), and {A.A.} (the set of two-factor interactions, the

matrix (EE') can be partitioned in the form

{V} {A.} {A.A.1
Si 3

Mi MI H! { p
~11 12 1-3](2.10) EE' = M23 {A.1

Lsy,:.. M33j {A.A.}

Theorem 2.1. We have, for distinct i, j, k, and £,

(2.11) e(p) = s(AiAi) = s(AiAi, AiA.) = N

1 - 0
(2.12) c(AiA.) = e(Ai,AiA) X(a. a.)

)1 0 1 0
(2.13) C(A.A)i =(pA.A.) =(A.Akl A.A k X(a -i a . )(a - a)

1] 0j 1 1 0, o
(2.14) (Ai,AAk) = 1(a - a.)(a - a_(ak - ak)

1 0 1 O1 1 0 1 0

(2.15) (A.A.,AkA )X(ai a )(a a)(a a)(a a -k aZ tak ak)£ k z

The value of the X-operator for the above polynomials can be calculated by

using the definition at (2.6). For example

(2.16) E(Ai.Aj.k) = X(a 1  a0)(aI - a0)(a 1 - ak)
K = i -i j j k k

1 1, 1 ii 0 10l1 0 11 1i0 0 01i0
X(a aiaa- aia - aia a a a + aia a + aiajak

Il o i kooojk

0 01 0 0 0a+ aiaa a aaaa
i k k

.iii .Ii0 .101 .011 ,.00 010 001 000I ijk ijk ijk -ijk ijk ijk ijk
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From these equations and the definition of the X-operator ic can be checked that

if T1 and T2 are two fractional designs, then

(2.17) (EE') = (EE')T + (EE t ),
T1T 2 = E'T1

for any T, where, (EEI) is the matrix (EE') corresponding to the design T.

T

A fractional design T with N assemblias can be reDrEsented as an (m x N)

thmatrix T E[t,t 2 ... ,t], where the column verc.' t corresponds to the r assemb-ly

r-r

Example 2.1. As an example consider the ±ollcwing fractional design T for m=5.

This design is a special case of the series III cesigns given in section 4.

i i1 0 0 0 1 0 0 0 1 "!l 0 0 0 1 0 1 0 1 1 1 0 1 0 0 i1
H- 0 0 001 00 0 111 1 0f

ST = 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 L.

.0 1 1 0 0 0 0 1 0 0 1 1 0 1 !

0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1!

It is easil:, seen using theorem 2.1 that all diagonal elements of M = EE' equal

N(=16). Furtber we have that M = 0 since 1(p,A )0=(a • ) I = 0,
12 151

where 0 denotes a (u x v) matrix with zeros everywhere. Also we see that foruv

all i j,
1 0 ' 0 11 10 01 00

e(A.,A)= X(a - a.)(a i - a.) = X(a.a. - a.a. - a.a. 1 + a.a.)

11 10 01 00= -A.. -X.. + -.. = 0.

Hence M2 2 = 1615 and M1 3 = 01,10. Next we have from (2.16)

ll 10 101 01i lO0 010 001 .000
c(A.,AjA) X . - X. - X. - X. +i- X - i-.. -A '2

ijk ijk ijk ijk ijk ijk ijk ilk

which is also zero for all i, j, and k. Thus M23 = 05,10- Similarly, it can be

checked that for M3 3 , all the off-diagonal elements are zero, except that

e(A 1 A2 ,A3 A5) :(AIA3 ,A 2 A5 ) 5 c(AIA1,A 2A3 ) 2 A3 .

S.
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3, The 2 Fact(,rial Experiment

U-T be a fractional design for- a 2 factorial experiment with 1 asseir-lies.

Recall that T is Pcgar-ded as aD (n x N) matrix of O's and l'r where each cu..u.n

corresponds to an assenbly.

Del-. 3.1. (a) T is said to be of resolution IV, if all main affects are estimable

under th= assumpDtion that 3-factor and higher order interactions are zer:. (Notice

that we have no such assumption regarding 2-factor interactions; they might pcssibly

be nonzero). If, furthey-, the es.imates of the main effects have zero correlation

with the escimates of every, estimable linear, combination of the general .ear' n anc

the two-factor interactions, then T is said to ->e cf resoluLion IV*.

(b) In general, in any given situation, if T is such that ail parameters

of interest are estimable, then T is called nonsingular. Thus, i- this paper, the

properties of nonsingularity and resolution IV are equi--alen•.

(c) The matrix T (., x N) is said to be (1,0) symmetric of strength t (< m),

if every (t x N) submi.trix remains unchanged by interchanging the symbols 0 and 2.,

except for the order in ,hich the columns appear. If t z m, T is called

"cccmpletely (1,0) sy-nmetric". (Clearly, strength t implies strength Y., for

r < t. Also, the authors havy' exampies of arrays T, which a_-e of a certain

strength r, but not of strength t, for some t >

(d) T is said to be balanced if ccv (0,, Ai), vaxv (r.), and coy (A., A.)
1 1 3

(i / i), are independent of i and .

Theorem 3.1. T is of resolurion IV* if and only if it is (1,0) syminetric of

strength 3, and (EE') is nonsingular.
T

Proof. T!hat (EE') be nonsingular is obviously necessary. Main effects will be

orthogonal to general mean and two factor interactions if and only if M12 and M2

in equavion (-2.10) are zero matrices. Thus we have from (2.1l)-(2.15):

(3.1) 0 = E(uA X X c(A.A i j 1, 2, m.
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Thus • ? , for all i. Now since . X.. + A.. for all a, and all j w

have

S. .. ,. + .. I. + = I. + A.•
"-.j 13 13 1--

) where the second equation is obtained from the first by interchanging i and j. Hence,
,l 00 .10 =Ol

X3.2) A .. and - . = i., for all i ý j,

Since M is zero, eAAk) is zero for all diszinct i, A and k. Thus, from (2.16)
23 krOJ

0 1 .3.1 f .1 0 0 + A 0 1 0 + ý 0 0 1 .0 0 0 . !O l O I 0 i i0
(3.3) 0 = .k + M ijk + ijk - *i'k - Aijk - ilk - ijk;

(% a~0 61
As before, since A + ik , eqations (3.2) and (3.3) imply

'j ijk k

-1 000 100 -011 '010~0 001 110
(3.4) - . A A: x x - 0,IiAk -.k ijk ijk ijk ijk ijk ijk

which proves the necessity pavt. The sufficiency is obvious by us.ng the above

arguments in reverse.

Let E' be partitioned colum'u-wise according to general mean, main effects, ani

two facror interactions, El = [E': V': Z'1 Then frow (2.10), M E E-. Heice
0 1 ~2 '22 1 1

: fcr a nonsingutiar T, we get from (2.7),

(3.5) [AIA?....,A]' 2 E z

where A. is the es:ýti.mate of the main effect Cl. learly we balre

A 1 2~ r. $ 2'E"• ~~~~cov(AV "21 " ""!;A^) "M -2" o 2(E!E..-II

Tneo.e.rm 3.2. Let T sdtisfy the conditions af theorem 3.1. A .necezsary and

sufficienrt condition that T be a balanced fractional design is that k. .

a constant for t! " L 4,.

"I.

1K__



Proof. Suppose X• 1 c, for all i • j. Nowi3

(3.6) •(A.,A.) =(a a + a) N;

1 1 1 1 11 1 1 0

(3.7) e(Ai,A.) :(a - a?)(a a a.) X =l X- X + Xi? 4w .1:3 z 1] 1:] 1:

Hence

(3.8) M22 = (2N - 4wI + (4w - N)J ; and

(3.9) M1=(g h)I + hJi, whereM22 :m 'rm"

1 M-1
(3.10a) g = m[4(m-)w - (m-2)N- + R(2N-4w)

1 !
(3.10b) h = L

m[L(m-!)w - (m-2)N] m(2N -

(3.10c) g - 1I[2N - 4w]

Hence, if X.. is a constant w for all i • j, then T is balanced. On the other hand
i -i

if T is balanced, ther. I has all diagonal elements same and all off-diagonal
22

element same, so that M2 2 is of the forn (3.8) for some value of w. Hence (3.6)

holds for all i • j. This completes the proof.

it follows from the above theorem that if T is a balanced fractional design,

tnen T is the incidence matrix of a BIBDU, (i.e. a BIBD with possibly unequal

block sizes), and 1-- ing parameters of the form (v* = m, b* = N, r* = N/2, and

w). This observation provides a simple method for obtaining balanced fractiona.

designs. For example. if T is the incidence matrix of a BIBDU with Dararzters

(v* = m, b = N/2, r*, X*), then T = T1 E T 1 is a balanced fractional design where

i is the (1,0) complement of T i.e. T is obtained from TI by interchanging

1 and 0. It is obvious that T is completely (1,0) sy'metric. Consider the ith

a th 11 00
and j rows of T Then, for T,, X.. = and . b. - 2r* + X*, and by the

11 11 00
method of construction of T, it is clear that . .(T) X (TI + A C(T Hence,

for 1 we have
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(3.11) w b* 2(r* -)

A BIBDU may be easily obtained from an ordinary BIBD, by cutting out some of the

treatments and perhaps adjoining some blocks containing all treatments and/or

some blocks containing nc treatments As an example take a (BIBD), with parameters

(v*, b*, r*, k*, X*) and cut out v 1 < v* varieties. Next adjoin b blocks containing

each of the remaining (v*- v ) varieties, and b blocks containing no varieties.
1 2

The resulting BIBDU has parameters ((v* - vl), (b* + bI + b ), (r* + bl),

(X* + bl)). (It may be beneficial to the interested reader to remark here that

the incidence matrix of a BIBDU is a partially balanced (PB) array of strength

2, the latter being.defined for example in Chakravarti (1963) or Srivastava (1967)).

We now consider the non-singalarity and optimality of the balanced fractional
ri

designs obtained in this manner.

Lemma 3.1. b.et T be i balanced design as in Theorem 3.2. ThE (a) The characteristic

roots of M22 are [4(m-l)w - (m-2)N] and [2N - W4], with multiplicities 1 and (m-i)

respectively,
i -i

(b) Tle characteristic roots of M are [g + (m-l)h] and (g-h) with multiplicities
-• -ilI rng+(mlh( -hmIwhr

1 and (m-l) respectively. Also tr(M ) mg and IM22 g + (m-l)h](g-h) where

&. and h are given by (3.10).

Proof: Let k and k. be constants. Then the matrix k I has a roct k wi-h
1 m

multiplicity m, and the matrix k 2Jmm has roots mk2 and 0 with multiplicity 1 andk2mmm

(m-l) respectively. Since I and J comnnute, the roots of (k,I + kA ) are
fM im 21Pmr

(k + mk ) and k with multiplicities 1 and (m--!). The proof is completed by
1 2 1

cippropriate substitution for k and k2V a-d noting that the trace and determinant

are respectively the sum and the product of the roots.

Theorem 3.3. A necessary and sufficient condition that a balanced fractional

design T be nonsingular is that
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(3.12) [(m-2)/4(m-)JITI < w('T) < ('/2)ii'

where T denotes the numbher of assemblies in T, and c,(T) is the value of w associated

with T.

Proof: The matrix M 22 1 is 22
2 E! is Obviously positive semidefinite. Thus

is nonsingular if and only if ail roots of M22 are positive and tne result foliows

from lemma 3.1.

Co~collary 3.1. Let m be even, and let T be the incidence matrix of a BIBD with

k* = m/2, and v* = m. Then T, considered as a fractional desLgn is, singulav.

However, the balanced design obtained by adjoining to 7 (at least) one block

containing all varieties and (at least) one Dlock containing no variety, is

nonsingular.

Proof. Since ver* = b*k*, and r*(k*-!) = X*(v*-l), we get under the stated

conditions: r* = b*/2, ITI = b*, and X* w. Thus we have w = b*(m-2)/4i(m-).

Hence, by (3.12),T is singular. The fractional design T* obtained by adjciniRg

the two blocks has IT*I = b*. + 2, and w(T*) = w + 1. The proof is easily

corm!eted by checking that these values satisfy (3.12).

Corollary 3.2. Let T = T1 e 1' where T1 is the incidence mnatrix of a BIBOU

with parameters v" = m,b* ,r*, X*. Then T is nonsingular if and only if

(3.13) 0 < r* - X* < mb*/4(m-l).

Proof. Clearly ITI = 2b*, and by (3.11), w = b* - 2(r* - X*). Then (3.121 gives

2b*(m-2)/4(m-l) < b* - 2(r* - A*) < 2b/2

which leads to (3.13).

Let' 6) denote the class of all balanced norsingular comiletel,, (1,0) s-,,mnetric

fractional designs. Then N is even, since A1 : for all T elf. Let denote

the class of all T ejlwith ITi N.

I
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Theo:rem 3.4. Let T t: Then N > 2m, and ne (the nimbei- of degrees of freedom

for error) satisfies

(3.14) (N-2m)/2 < n < N-2m.

?Proof. Let c =w - N. Then, M22 (N-c)I + cJT. Let M* be the principal
Pro.Lt w22 m VTMm

submatrix of (EE') having 'hf r-ows and columns corresponding to {U,AIA2,A A A3...,AIAm}.

Thlien it can be checked by direct calculation that M M*. Also, since T ,

* T and hence M22 is nonsingular. Since MI2 and M23 are obviously zero matrices,

this implies Rank (EE') > 2m. But Rank (EE') = Rank (E) < N; hence N > 2m.

Also, .he nunýer of degrees of freedom for error is ne r N-Rank (M) and thus

n < N - 2m. i'inally, let T E -, and let (M**) be the principal submatrix ofe e

(M)T .,-Pesponding to u, and 2-factor interactions. Now T can be divided intO

two ca-t" T1 and T2 = T " Then it can be checked that M** is the same for T2

as for ,,, except for a constant multiplier. Thus R(M**) = R(M**)T < N/2, and

P(M)T = R(M22)T + R(M**)T < m + N12

Hence ne > N - (N + 2m)/2 = (N - 2m)/2, proving (3.14).

Theorem 3,3.. ;,et T c /N, then T is trace optimal in N if one of the following

holds for sof'E positive integer a.

'"3.17) (i) D = 4a and w = a

(3.18) (-i + 2 and ,- = a + I

Sproof: From ie .L-';,l, and (3.8) we have

--- 1
tr(M22 ) = 2N-4t1u + [4(m-l) - =f)'

say, where f(w) is a fiaction of EL for fixed m and N. Suppose w were a continuous

variable. Then

(3.19) f,( = df(w) _ -4m(m-l)(N-4w)[4w(m-2) - (m-4)N]
dw [2N-4w•][4(m-l)w (m-2)N] 2 -

--
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and f'(w) = 0, when w1 N/4 or w = (m-4)N/4(r.-2). The root w = (m-4)N/4)(m-2)

is extraneous since by Theorem 3.3.w > N(m-2)/4(m-1). Since the denominator of

(3.19) is always positive it is easy to see that f'(w) < 0 if w < N/4 and > 0

if w > N/4. Hence f(w) attains an absolute minimum when w, = N/4 and (3.17)

is proven. Now, suppose N = 4a + 2. Since w can take only integer values,

w = N/4 is not possible. Hence we must find the integer value of w which makes

f(to) as small as possible. Since f(w) is strictly decreasing on (N(m-2)/4(G-1),N/i)

and increasing on (N/4,N/2) the absolute minimum can occur either at W =a = N/4 - 1/2

or w = a + 1 = N/4 + 1/2. But it can he checked that

f(a + 1) - f(a) 16m(m-l)(2-m)f~e+ i -f~a =(N-2)(Ni?)[N÷2(nm-i)][Ný-2(m-1I] -< 0

since m > 2, and N > 2m. This completes the proof.

Thecrem 3.6. Let T e , then if T is trace optimal in . if T is determinant
?N N'

optimal and conversely.

Proof. Let

f I(" = IM2 21 = [4(m-l)w - (m-2)N][2N - 4w]

We must show that for any (even) N. IM221 and trM22) become minimum for the same

value of w.

Then

f() = 4m(m-l)(2N-4w)m-2(N-40,

The roots of fT(O) = 0 are w = N/2 or w = N/4. Among these w = 1712 is not ir the

domain of fl Again ic is easy to see that f (w) is incredsing on (N(T-2)/4(n-l).

N/4) and decreasing on (N/4, N/2); thus an absolute raxinium is reached at w = n/4

and the theorem is proven if N = 4a , a an integer. When N = +i + 2, we have

f!(a + 1) - fie) = (N-2) (N+2 )m + 2m[(N- 2 )r-l (N+2 )m-l]

= (N+2) m-1 Qm ay, where

R (N+2)-l [2m(l+m-) - 4(1- $)-1 (i-m)],
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I where 0 (N-2)/(N+2). Now Q3 32(N+2) > 0. This proves the result for m=3,
since f (a + 1) - f (a > 0. For larger n., it is clearly sufficient to show

that -3 is an increasing function of m. But it can be checked that

m-2 m-3 m-2 (1m-e)]

wh46ch is > 0, since B < 1. This completes the proof.

Theorem 3.7. Let T c62N, then trace optimality of T implies maximum root optimality,

and coniersely.

Proof: Frci lemma 3.1 the characteristic roots of M are [4(m-l"w - (m-2)N]-
22

and (2N-40) . Now

(3.20) [4(m-l)w - (m-2)N] <, =, or > 2N-4 , according as w <, =. > N/4.
%1

If N=4a, it is obvious from (3.20) that the maximum root of M takes the smallest
22

value when w = N/4. When N = 4a + 2, the max. root of M 22is [k-rnl)w -

or [2N - 4w] according as w = a or a + 1.

But (3.20) shows that a'ong these, the value of the max. root of M is smaller

at L = a + 1. This completes the proof.

Theorem 3.8. Let T be the incidence matrix of a BIDDU with parameters41

(v- = m,b*,r*,A,*) such that T = T1 a) N Let6! denote the class of fractions
1 N

obtainable from BIBD's in th's r.Lnner. Then T is crace optimal within ý'if there

exists an integer a such that any of the following conditions hold:

S(i) b = 4a + e; 8 = 0, 1, or 2, and r* - a;

(ii) b =4a + 3, and r*-* a + .

Proof: It has alreadj been shown that if T T1  TV then w = b - 2(r* - X*.)

and N = 2b*. Thus r* - (b-w)/2.

When b* = 4a, we gec N 4= (2a), and the oDtimum value of w, is 2a so that r* - A* a.

"When b* = 1I + 1, we get N 4(2a) + 2, and the optimum value of w is (2a +1),

} *



so that r* - *= a. Next, suppose b* = 4a + 2. Then N = 4(2a + 1) and the

algebraically optimum value of w is (2a t 1) Ahich implies (r* - ) = (a + 1/2),
Swhich is not possible since r*, X and a are integers. Hence the conbinatorially

possible optimum value of w is either 2a or (2a + 2). Define f(a%) be as in the

proof of theorem 3.5. Then

i [ ~ -64(m-i) (m-2)

f(2a + 2) - f(2a) = I NmI

I 2 - 2)[N+4(m-1'](N/2 + 2)[N-4(m-l)]

which is <, or > 0, acc-"ding as N >, or < 4(m-l). But N < 4(m-l' implies

w < N(m-2)/4(m-l). Hen'e w -7 2a + 2. Tnus part (i) is proven, since

S- X " [(4a + 2) - ,2a + 2)]/2 = u.

If b* = 4a + 3, then N 4(2a + 1) - 2 and from theoram 3.5; che algebraically

7 optimum value for w is (2a + 2). However, w = 2a + 2 leads to r* - = (a T 1/2).

Thus the choice for actual optimum is between w = (2a + 1) or ,• = (2a + 3).

The remainde" of the proof is identical with the preceeding, and will be omitted

to avoid repetition.

9 4. Balanced Designs for the 2m Factorial Experiment

Several balanced fractions are available for the 2m factorial experiment

which permit estimates of main effects free of two factor interactions. Certain

fractions will now be presented along with a note on their optimality.

Def. 4.1. if T and T are two balanced fractions wi!th N assemblies each, the
1 2

k, efficiency of T1 relative to T will be defined as

(4.1) Eff(T1/T ][tr(EE')--I]-1

21

Th- efficiency Eff T), of a balanced fraction T, is defined as the relative

efficiency of T relative to a (possibly nonexistent) fraction satisfying the

I



'V
16

optimality condition of theorem 3.4. We now present some actual designs obtainable

-by the method of the last section.

Series I. Let T = CJm 0 mpI i T 1, where T is obtained from the matrix ISp M m

by interchanging 0 and 1. For these fractions, ITI = 2(m+p), and

Eff(T) 4[m(mip) -•4(m-l)][2m + 2 -

(m+o)l 7(2m+0-1)O(me: -l) 0 [(m+p)(m-l) - 4(m-2)]

where a equals 0 or 1 according as (mip) is even or odd. It can be checked by

direct calculation that the efficiency of these designs decreases as m and P

increase, from about 70% for m = 7, P = 0, to about 25% for m = 12, P = 5.

As an example of a fraction constructed from balanced incomplete block

Sdesigns, consider the series of BIBD with parameters (v* = m = UX* + 3, b*

4)* 4 3, y* = 2A* + 1, K* = 2X* + 1, A*), where 4)* + 3 is a prime power,or a

prime. Their existence is proved in Bose (1940). Let T1 be the incid=- , matrix

of a BIBD of this form.
Series II. Let T = J mE 0 Om @ T1 0 T7. Then N = 4(2X* + 2) and w = (2X* + 2).

The number of d.f. for error is i. Also, the efficiency of these fractions

equals 1, so that they are optimal, i is interesting to note that if the twc

assemblies represented by ml and 0ml are omitted from the design, the efficiency

is reduced to 4(X* + !)/(8X* + 5).

Series III. Let 2X* + 1 < m < 4X* + 3, and cut out (4X* + 3 - m) varieties from

the BIBD given in series II. Then a design with parameters (m, b = 4X* + 3,

r = 2A* T 1, A) is cbtained, and with w = (2X* + 1). From theorem 3.5 the optimum

value of w is (2X* + 2), and the efficiency of the design may be computed by

substitution. If a column of i's and a column of O's is adjoined to T, then N z

4(2A* + 2) and w = (2X* + 2) and the efficiency of the designs in this series becomes 1.
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In the following table we give fractional designs of resolution IV for

the 2m series when 7 < m < 12, and for several practical values of N. To obtain

the set of assemblies in the design, first write the incidence matrix Tý of a

BIBD with parameters as given in the table, and then cut out any v* - mn rows.

One such BIBD in each case is given in Cochran and Cox [(1960), pp. 469] with

plan number as given in the table. Then adjoin (N/2 - b) columns of zeros to T*

and call this matrix T .' The final set of asseriblies is then T = T 1 9 T 1where

T 1is obtained from T 1 by interchanging l's and D's. it should be noted that

there are several BIBD's, In addition to the one listed, which will give fractional

designs with the same parameters. From the point of view of efficiency these

designs are equivalent; however, they may differ with respect to the number of

degrees of freedom fr-,r error. This aspect of the designs is too cumbersomeIto be studied here, except that we have (N - 2m)/2 < n e< N - 2m by Theorem 3.4.
The efficiency given in the table for the designs is relative to the class

of all balanced fractional designs. Withiin the class of designs of the formr

T 4) T. where T, is the incidence matrix of a BIBDU, the designs given are
I '

optimal.

E
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Table 1

m 7 m=8 m 9

N (b~r*) E Plan (br XI c Plan C (bcr'lc Plan

16 (7,3,1) 1.00 7

18 (7,3,1) 1.00 7

20 (7,3,1) 0.88 7

22 (11,5,2) 0.94 19 (11,5,2; 0.91 19 (11,5,2) 0.85 19

24 (11,5,2) 1.00 19 (12:8,5) 1.00 13 (12,8,5) • 1.00 13

26 (13,4,1) 1.00 22 (13,4,1) 1.00 22 (13,4,1) 1.00 22

28 (14,7,3) 0.93 10 (13,4,1) 0.92 22 ()3,4,1) 0.92 22

30 (15,6,2) 0.98 16 (15,6,2) 0.97 16 (lb,6,2) 0.96 16

32 (16,6,2) 1.00 27 (16,10,6) 1.00 29 (16,10,6) 1.00 29

34 (15,7,3) 1.00 25 (16,10,6) 1.00 29 (16,10,6) 1.00 29

36 (16,6,2) 0.95 27 (16,10,6) 0.?5 29 (18,9,4) 0.94 17

38 (19,9,4) 0.99 31 (18,8,3) 0.99 11 (18,8,3) 0.98 11

40 (18,8,3) 1.00 11 (18,8,3) 1.00 11 (19,10,5) 1.00 32

m : 10 m.1i m 12

N ,b~r&;f) c Plan (bjrf) C Plan (b•rt) E Plan

22 (11,5,2) 0.76 19 (11,5.2) 0.57 19

"2'2 (11,5,2) 1.00 19 (11,5,2) 1.00 19

26 (13,4,1) 1.00 22 (11,5,2) 1.00 19 (13,4,1) 1.00 22

28 (13,4,1) 0.91 22 (11,5,2) 0.91 22 (13,4,1) 0.91 22
M4(1562) 0.9 1 (15,7,3) 0.91 25 (15,7,3) 0.88 25

30 (15,6,2) 1.

32 (16,6,2) 1.00 27 (16,6,2) 1.00 27 (16,6,2) 1.00 27

34 (16,6,2) 1.03 27 (16,6,2) 1.00 27 (16,6,2) 1.00 27

36 (16,6,2) 0.94 27 (16,6,2) 0.94 27 (:6,6,2) 0.94 27

38 (19,9,4) 0.97 31 (19,9,4) 0.97 31 (19,9,4) 0.94 31

40 (19,9:4) 1.00 31 (19,9.4) 1.00 31 (19,9,4) 1.00 31
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